Tevékenység Áttekintése
A hallgatók máris ismerik a sok-sok formát, de lehet, hogy nem ismerik a matematikai neveket. A kezdés egyszerű módja annak azonosítása, hogy egy alak sokszög-e vagy sem. A sokszög zárt alak, amely legalább három oldalból és szögből áll. A háromszögek, négyszögek, ötszögek, hatszögek stb. Mind sokszögek. A sokszögek furcsa alakúak lehetnek, konvex és konkáv oldalakkal rendelkezhetnek, és tetszőleges számú oldallal rendelkezhetnek. Bármely alak íves vagy nyitott véggel NEM sokszög.
Ebben a tevékenységben a hallgatók alakzatokat mozgatnak egy sablonból a saját storyboard megfelelő oszlopába . Az interaktív táblák vagy a vetített számítógép képernyői vonzó osztálytevékenységgé teszik ezt, de a hallgatók ugyanolyan egyszerűen dolgozhatnak külön-külön vagy párban a számítógépen.
Lásd még Polygonia és Roundsville egy rövid matematikai történetet.
A sokszögeket az oldaluk (és ezért a szögek) száma szerint lehet kategorizálni:
- Háromoldalú sokszögek - háromszögek
- Négyoldalú sokszögek - négyszögek
- Ötoldalú sokszögek - ötszögek
- Hatoldalú sokszögek - hatszög
- Hétoldalú sokszögek - heptagons *
- Nyolc oldalú sokszög - nyolcszög
- Kilencoldalas sokszögek - nemszögek *
- Tízoldalú sokszögek - dekagonok *
- Tizenegy oldalú sokszög - hendekagon *
- Tizenkét oldalú sokszögek - dodekagonok *
* Ezeket a formákat a Közös Core nem követeli meg, de jó, ha praktikusak a nevek, ha a kérdő elmék tudni akarnak.
Sablon és Class Utasítások
(Ezek az utasítások teljesen személyre szabhatók. Miután a "Tevékenység másolása" gombra kattintott, frissítse az utasításokat a feladat Szerkesztés lapján.)
Hallgatói utasítások
Osztja a megadott formákat sokszög vagy nem sokszög közé.
- Kattintson a "Hozzárendelés indítása" elemre.
- Nézze meg az első oszlop alakjait. Vizsgálja meg tulajdonságaikat és hogyan néz ki.
- Húzza az összes sokszöget a "Sokszögek" feliratú cellába.
- Húzza az összes nem sokszöget a "nem sokszögek" feliratú cellába.
- Mentse el és küldje el a forgatókönyvet.
Óravázlat Referencia
Tevékenység Áttekintése
A hallgatók máris ismerik a sok-sok formát, de lehet, hogy nem ismerik a matematikai neveket. A kezdés egyszerű módja annak azonosítása, hogy egy alak sokszög-e vagy sem. A sokszög zárt alak, amely legalább három oldalból és szögből áll. A háromszögek, négyszögek, ötszögek, hatszögek stb. Mind sokszögek. A sokszögek furcsa alakúak lehetnek, konvex és konkáv oldalakkal rendelkezhetnek, és tetszőleges számú oldallal rendelkezhetnek. Bármely alak íves vagy nyitott véggel NEM sokszög.
Ebben a tevékenységben a hallgatók alakzatokat mozgatnak egy sablonból a saját storyboard megfelelő oszlopába . Az interaktív táblák vagy a vetített számítógép képernyői vonzó osztálytevékenységgé teszik ezt, de a hallgatók ugyanolyan egyszerűen dolgozhatnak külön-külön vagy párban a számítógépen.
Lásd még Polygonia és Roundsville egy rövid matematikai történetet.
A sokszögeket az oldaluk (és ezért a szögek) száma szerint lehet kategorizálni:
- Háromoldalú sokszögek - háromszögek
- Négyoldalú sokszögek - négyszögek
- Ötoldalú sokszögek - ötszögek
- Hatoldalú sokszögek - hatszög
- Hétoldalú sokszögek - heptagons *
- Nyolc oldalú sokszög - nyolcszög
- Kilencoldalas sokszögek - nemszögek *
- Tízoldalú sokszögek - dekagonok *
- Tizenegy oldalú sokszög - hendekagon *
- Tizenkét oldalú sokszögek - dodekagonok *
* Ezeket a formákat a Közös Core nem követeli meg, de jó, ha praktikusak a nevek, ha a kérdő elmék tudni akarnak.
Sablon és Class Utasítások
(Ezek az utasítások teljesen személyre szabhatók. Miután a "Tevékenység másolása" gombra kattintott, frissítse az utasításokat a feladat Szerkesztés lapján.)
Hallgatói utasítások
Osztja a megadott formákat sokszög vagy nem sokszög közé.
- Kattintson a "Hozzárendelés indítása" elemre.
- Nézze meg az első oszlop alakjait. Vizsgálja meg tulajdonságaikat és hogyan néz ki.
- Húzza az összes sokszöget a "Sokszögek" feliratú cellába.
- Húzza az összes nem sokszöget a "nem sokszögek" feliratú cellába.
- Mentse el és küldje el a forgatókönyvet.
Óravázlat Referencia
Hogyan kell eljárni a sokszögrendezési tevékenységgel kapcsolatban
Hozz létre sokszögvadász játékot az osztályodban
Vond be a diákokat, hogy keressenek való életbeli példákat a szobában található sokszögökre. Csíptetőlapok és ellenőrzőlisták teszik ezt a tevékenységet interaktívvá és szórakoztatóvá, miközben a diákok felismerik és rögzítik az általuk észlelt formákat.
Magyarázd el a sokszög kritériumait a kezdés előtt
Világosítsd meg, mi tesz egy formát sokszöggé: zárt kell legyen, egyenes oldalai legyenek, és legalább három szöge legyen. Használj egyértelmű vizuális segédeszközöket, hogy bemutasd példákat és nempéldákat, így a diákok tudják, mire figyeljenek.
Modellezd a sokszögek keresését a diákokkal
Sétáljatok együtt a szobában, és mutassatok meg néhány sokszöget, mielőtt a diákok önállóan keresni kezdenek. Beszélj hangosan, hogy bemutasd a gondolkodási folyamatodat.
Adj ellenőrzőlistákat vagy felvételi lapokat
Adj mindenkinek egy egyszerű lapot a megtalált sokszögek összeszámlálásához vagy lerajzolásához. Bátorítsd a címkézést (háromszög, négyszög stb.), hogy megerősítsd a szókincset.
Osztályteremben megosztani és megvitatni az eredményeket
Hívd meg a diákokat, hogy osszák meg felfedezett érdekes sokszögeiket. Beszéljétek meg a bonyolult példákat, hogy mélyítsétek a megértést és tisztázzátok a félreértéseket.
Gyakran Ismételt Kérdések a Poligon Rendezési Tevékenységgel kapcsolatban
Mi az a sokszög, és hogyan magyarázhatom el a diákjaimnak?
A sokszög egy zárt alakzat, amely legalább három egyenes oldalból és szögből áll. Példák közé tartoznak a háromszögek, négyszögek és ötszögek. Bármilyen alak, amely görbült vonalakkal vagy nyitott végekkel rendelkezik, nem sokszög.
Hogyan taníthatom meg a diákoknak a sokszögek és nem sokszögek elkülönítését?
Bátorítsa a diákokat, hogy keressenek zárt alakzatokat, amelyek csak egyenes oldalakat tartalmaznak. Segítse őket abban, hogy ezeket a formákat a 'Sokszög' oszlopba húzzák, míg a görbült vagy nyitott végű formákat a 'Nem sokszög' oszlopba. Interaktív táblák vagy digitális sablonok teszik ezt az aktivitást élvezetesebbé.
Milyen könnyű tevékenységek vannak a sokszögek bemutatására 2-3. osztályosoknak?
Próbáljon ki olyan rendező tevékenységeket, ahol a diákok a formákat a 'Sokszög' vagy 'Nem sokszög' csoportba helyezik, használjon történet-alapú matematika forrásokat, például a Polygoniát, vagy hagyja, hogy a diákok rajzoljanak és címkézzenek különböző oldalú formákat.
Mi a különbség a sokszögek és a nem sokszögek között?
A sokszögek csak egyenes, összekapcsolt oldalakat tartalmaznak, és zárt alakzatok. A nem sokszögek görbült vonalakkal, nyitott végűekkel vagy nem teljesen összekapcsolódó oldalakkal rendelkeznek, így nem felelnek meg a sokszög definíciójának.
Hogyan tehetem a sokszög rendező tevékenységet még vonzóbbá az osztályom számára?
Használjon interaktív technológiát, például táblákat, ossza meg a diákokat párokba csapatmunkára, adjon hozzá történeti elemet (pl. a 'Polygoniából'), vagy hagyja, hogy a diákok saját formáikat hozzák létre a rendezéshez, így a tanulás kézzel fogható és szórakoztató lesz.
További Storyboard That Tevékenységek
Bevezetés a Geometria
Ez a Tevékenység Számos Tanári Útmutató Részét Képezi
Beszámolók

"A termék használatával nagyon izgatottak voltak, és nagyon sokat tanultak..."–K-5 könyvtáros és oktatási technológia tanár

„Csinálok egy Napóleon idővonalat, és a [diákokkal] meg kell határoznom, hogy Napóleon jó vagy rossz fiú volt-e, vagy valahol a kettő között.”– Történelem és szaktanár

„A tanulók kreatívak lehetnek Storyboard That segítségével, és rengeteg látványelem közül választhatnak... Ez valóban elérhetővé teszi az osztály minden tanulója számára.”– Harmadik osztályos tanár
© 2025 - Clever Prototypes, LLC - Minden jog fenntartva.
A StoryboardThat a Clever Prototypes , LLC védjegye, és bejegyzett az Egyesült Államok Szabadalmi és Védjegyhivatalában